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We investigate the large time behavior of multi-dimensional aggregation equations driven
by Newtonian repulsion, and balanced by radial attraction and confinement. In case of
Newton repulsion with radial confinement we quantify the algebraic convergence decay
rate toward the unique steady state. To this end, we identify a one-parameter family
of radial steady states, and prove dimension-dependent decay rate in energy and 2-
Wassertein distance, using a comparison with properly selected radial steady states. We
also study Newtonian repulsion and radial attraction. When the attraction potential is
quadratic it is known to coincide with quadratic confinement. Here, we study the case of
perturbed radial quadratic attraction, proving that it still leads to one-parameter family
of unique steady states. It is expected that this family to serve for a corresponding com-
parison argument which yields algebraic convergence toward steady repulsive-attractive
solutions.
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radial attraction.
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1. Introduction

In this paper, we study the large time behavior of the first-order aggregation

equation

∂tρ+∇ · (ρu) = 0, u(t,x) = −∇Φ(t,x), (1.1)
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subject to prescribed initial distribution, ρ(0,x) = ρ0(x), with mass

m0 =

∫
ρ0(x) dx =

∫
ρ(t,x) dx > 0, ∀ t > 0. (1.2)

The dynamics we have in mind for (1.1) governs the interaction of infinitesimal

mass elements, ρ(t,x) dx, which are dominated by repulsion near in the immedi-

ate neighborhood of x ∈ R
d and balanced by attraction and confinement which

dominate away from x. This reflects “social” interactions encountered in applica-

tions — describing collective dynamics in ecology, human interactions or sensor-

based crowds.1,2,9–12,14,16 In this paper, we consider the case of Newtonian repulsion

∇(−Δ)−1ρ(t,x) coupled with attraction ∇W ∗ ρ(t,x) and confinement ∇V(x),
u(t,x) = −∇Φ(t,x),

Φ(t,x) :=

∫
N (x − y)ρ(t,y) dy +

∫
W(x− y)ρ(t,y) dy + V(x).

(1.3)

Here, ρ(t,x) ≥ 0 is the large crowd density distribution of “agents”, varying in

time-space (t,x) ∈ (R+ × R
d), N is the Newtonian potential satisfying ΔN = −δ,

N (x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

−1

2
|x|, d = 1,

− 1

2π
log |x|, d = 2,

cd
|x|d−2

, cd > 0, d ≥ 3

(1.4)

and V(x) = V (r) and W(x) = W (r), r = |x|,W ′(r) ≥ 0 are confining external

potential and, respectively, a pairwise attraction potential, both are assumed radial,

smooth and with Pareto tail at infinity

lim
r→∞V ′(r)rd−1 = ∞, (1.5)

so that the external potential (— and likewise, the pairwise interaction potential)

dominates the Newtonian repulsion at infinity, limR→∞ V (R)/N(R) = ∞.

This paper is concerned with the large time behavior of the aggregation equation

(1.1), when Newtonian repulsion is balanced by the presence of either confinement

or attraction induced by a potential, V , or respectability, W . Observe that a steady

state of (1.1), ρ∞, is characterizeda by a velocity field which vanishes on the support

of ρ, i.e.

−
∫

∇N (x− y)ρ∞(y) dy −
∫

∇W(x− y)ρ∞(y) dy −∇V(x) = 0,

∀x ∈ supp ρ∞. (1.6)

aA steady solution of (1.1), ∇ · (ρ∞∇Φ∞) = 0, implies
∫
ρ∞|∇Φ∞|2 dx = 0, i.e. u∞ vanishes on

supp ρ∞ in agreement with (1.8) below.
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Taking divergence, then (1.6) implies

ρ∞(x) =

∫
ΔW(x− y)ρ∞(y) dy +ΔV(x), ∀x ∈ supp ρ∞, (1.7)

which appears to be a key property of steady states. The set of steady states is not

empty: indeed, (1.1) is the 2-Wasserstein gradient flow of the total energy

E[ρ] =
1

2

∫∫
N (x− y)ρ(y)ρ(x) dy dx+

1

2

∫∫
W(x− y)ρ(y)ρ(x) dy dx

+

∫
V(x)ρ(x) dx,

i.e. its solution ρ(t,x) satisfies the energy dissipation law

d

dt
E(t) = −

∫
|u(t,x)|2ρ(t,x) dx := −D[ρ(t, ·)], E(t) := E[ρ(t, ·)]. (1.8)

By compactness arguments E[ρ] admits a global energy minimizer, {ρ∞ : D[ρ∞] =

0}, which is a steady state of (2.1). The main question, therefore, is whether the

steady state ρ∞ is unique, and whether the solution ρ(t, ·) converges to ρ∞ as

t → ∞.

2. Main Results

We will use C and c to denote positive constants, being large and small respectively,

which may depend on V , W , and ρ0, but otherwise, are independent of the other

parameters; their specific values may change from one equation to the next. For

notation simplicity, we will assume d ≥ 2 in the rest of this paper. The counterparts

of all results for d = 1 are rather straightforward, and outlined in appendix. BR

denotes the d-dimensional ball BR = {x : |x| ≤ R}.

2.1. Newtonian repulsion with external confining potential

We first present the results for (1.1) with W = 0, i.e. the model with Newtonian

repulsion and external confining potential

∂tρ+∇ · (ρu) = 0, u(t,x) = −
∫

∇N (x− y)ρ(t,y) dy −∇V(x). (2.1)

The repulsion-confinement equation (2.1) is the gradient flow of the corresponding

energy dissipation law

E[ρ] =
1

2

∫∫
N (x − y)ρ(y)ρ(x) dy dx+

∫
V(x)ρ(x) dx. (2.2)

We note in passing that at least formally, (1.1) is a 2-Wasserstein gradient flow of

the total energy E[ρ]; consult8,10,11,13 for a rigorous derivation.

Existence of global minimizer. Our first result, summarized in Theorem 2.1

below, proves the existence of compactly supported, global energy minimizer of the

repulsion-confinement energy functional (2.2).
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Theorem 2.1. Consider the d-dimensional energy (2.2), d ≥ 3, with C2-potential

V such that lim|x|→∞ V(x) = ∞. Given arbitrary m0 > 0, it admits a compactly

supported global minimizer ρ∞ = argminρ∈S E(ρ) in S := {ρ ∈ L1 : ρ ≥ 0,∫
ρ dx = m0}.
Existence of minimizers for energy functionals involving potentials with a finite

limit lim|x|→∞ V(x) = V∞ goes back to Lions’ original work on concentration-

cancellation. [17, II.4] Related works on existence of minimizers for attraction–

repulsion energy functionals using concentration compactness arguments can be

found in Refs. 19, 12, 7 and 5 and using symmetry and symmetric rearrangement

arguments in Refs. 6, 18 and 15. Here we use compactness arguments to prove the

existence of compactly supported global minimizer in the admissible class

SM :=

{
ρ ∈ L1 ∩ L∞ : ρ ≥ 0,

∫
ρ dx = m0, ‖ρ‖L∞ ≤ M

}
. (2.3)

We first prepare the following comparison principle.

Lemma 2.1. Fix the constants m0, Em and M ≥ 2m0

|B1| . For every ρ ∈ SM such

that E[ρ] ≤ Em, there exists ρ1 ∈ SM such that E[ρ1] ≤ E[ρ], with compact support

supp ρ1 ⊂ BR, for R depending on Em, m0, d and V but independent of M .

Proof. Without loss of generality, assume minV = 0. Let R ≥ 1 be a large constant

to be chosen.

Set ε :=
∫
B
c
R
ρ dx. Since N ≥ 0 for d ≥ 3,

E[ρχ
BR
] ≤ E[ρ]− ε min

x∈B
c
R

V(x). (2.4)

We first choose R large enough such that minx∈B
c
R
V(x) > 2Em

m0
. This implies ε ≤

1
2m0 since E[ρχ

BR
] ≥ 0. We now define ρ1

ρ1 :=
m0 − 2ε

m0 − ε
ρχ

BR
+

2ε

|B1|χB1
. (2.5)

Then ρ1 ≥ 0,
∫
ρ1 dx = m0, and

‖ρ1‖L∞ ≤ m0 − 2ε

m0 − ε
M +

2ε

|B1| ≤
(
1− ε

m0

)
M +

2ε

|B1| ≤ M.

Thus, ρ1 ∈ SM . Moreover, ρ1 is compactly supported, supp ρ1 ⊂ BR, and it

decreases the energy of ρ, for large enough R:

E[ρ1] ≤ E

[
m0 − 2ε

m0 − ε
ρχ

BR

]
+ E

[
2ε

|B1|χB1

]
+

∫∫
N (x − y)

2ε

|B1|χB1
(y) dy

m0 − 2ε

m0 − ε
ρχ

BR
(x) dx

≤ E[ρχ
BR
] + Cε + Cε‖N ∗ χ

B1
‖L∞

≤ E[ρ]− ε min
x∈B

c
R

V(x) + Cε
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with C depending on m0 and maxx∈B1 V(x). Hence choosing R large enough such

that minx∈B
c
R
V(x) > C, then E[ρ1] ≤ E[ρ] and the lemma follows.

Proof of Theorem 2.1. Without loss of generality, assume minV = 0. Therefore

E[ρ] ≥ 0 always holds. Fix any M ≥ 2m0

|B1| and take an energy minimizing sequence

{ρMn } in SM , with E[ρn] ≤ Em where Em is a constant independent of M . By the

previous lemma, we may replace ρMn by ρM1,n ∈ SM such that supp ρM1,n ⊂ BR for

some R independent of M , and {ρM1,n} is still a minimizing sequence. Since {ρM1,n}
is uniformly bounded in Lp for any 1 < p < ∞, there exists a sub-sequence (still

denoted as {ρM1,n}) which converges weakly in Lp, to a limit denoted as ρM∞ with

supp ρM∞ ⊂ BR. Weak Lp-convergence implies

lim
n→∞

∫
ρM1,nV dx =

∫
ρM∞V dx

and since (−Δ)−1ρM1,n ∈ W 2,p converges Lp-strongly to (−Δ)−1ρM∞ , then also

lim
n→∞

∫
ρM1,n(−Δ)−1ρM1,n dx =

∫
ρM∞(−Δ)−1ρM∞ dx.

We conclude that

lim
n→∞E[ρM1,n] = E[ρM∞] (2.6)

i.e. ρM∞ is a global minimizer in SM .

We claim that

‖ρM∞‖L∞ ≤ MV , MV := ‖ΔV‖L∞(BR), (2.7)

for any admissible M (recalling that R is independent of M). Indeed, if we assume

that (2.7) fails, then ρM∞ cannot be a steady state of (1.1) since a steady state, by

(1.7), should satisfy ρ∞(x) = ΔV(x)χsupp ρ∞(x) and therefore cannot exceed MV .
Let ρ(t, ·) denote the solution to (1.1) subject to the “non-steady” initial condition

ρM∞ . The evolving solution satisfies ‖ρ(t, ·)‖L∞ ≤ ‖ρM∞‖L∞ (cf. STEP 1 of the proof

of Theorem 2.3 below), that is, ρ(t, ·) ∈ SM yet E[ρ(t, ·)] < E[ρM∞ ] for any t > 0,

which contradicts the minimizing property of ρM∞ in SM . Therefore (2.7) holds,

implying that

min
ρ∈SM

E[ρ] = min
ρ∈SMV

E[ρ], ∀M ≥ MV = ‖ΔV‖L∞(BR). (2.8)

Thus, ρ∞ := ρMV∞ is a global minimizer, uniformly bounded in SM for any M ≥
‖ΔV‖L∞(BR).

Finally, we claim that this ρ∞ is in fact a global minimizer in S = {ρ ∈ L1 :

ρ ≥ 0,
∫
ρ dx = m0}. Otherwise, if there exists a ρ ∈ S with a lower energy,

E[ρ] < E[ρ∞], then we consider the truncated

ρM :=
m0∫

min{ρ,M} dx min{ρ,M}. (2.9)
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Then ρM ∈ SM , and

E[ρM ] ≤
(

m0∫
min{ρ,M}

)2

E[min{ρ,M}] ≤
(

m0∫
min{ρ,M}

)2

E[ρ], (2.10)

and the last quantity converges to E[ρ] as M → ∞. Therefore, for sufficiently large

M , there holds {ρM ∈ SM : E[ρM ] < E[ρ∞]}, but this contradicts the minimizing

property of ρ∞ in SM .

Uniqueness of steady states. It is straightforward to show that global minimiz-

ers asserted in Theorem 2.1 are unique for any external potential V(x): indeed,
given any two minimizers ρ0 and ρ1 with the same total mass and considering the

homotopy

ρs(x) := (1 − s)ρ0(x) + sρ1(x), 0 ≤ s ≤ 1, (2.11)

one can verify the convexity
d2

ds2
E[ρs] > 0, which implies uniqueness of the global

energy minimizer. However, the uniqueness of global energy minimizer does not

imply the uniqueness of steady state. In fact, a 1D example outlined in the appendix

shows that if V is not convex, then generally speaking steady states may not be

unique, despite the uniqueness of global energy minimizer. This suggests that the

conclusion of uniqueness of steady states asserted in the theorem below is far from

trivial.

Theorem 2.2. Consider the aggregation equation (2.1) with radially-symmetric

confinement V(x) = V (r), satisfying (1.5) and ΔV(x) > 0, ∀x. Then for each

m0 > 0, (2.1) admits a unique compactly supported steady state with total mass m0,

and it is radially-symmetric.

Remark 2.1. In the appendix, consult Proposition A.2, it is shown under a restric-

tive tail condition, V ′(r) � r−
d−1
d+1 for r ≥ R0, that a steady solution of (2.1) must

be compactly supported. The gap between (1.5) and this tale condition remains

open.

Proof. As a first step we record the following family of radially symmetric steady

states parameterized by a cut-off radius R > 0

ρ
R
(x) := ΔV(x)χ|x|≤R(x).

Indeed, the total potential field generated by ρR(x)

ΦR(x) :=

∫
N (x − y)ρ

R
(y) dy + V(x) =

∫
N (x − y)ΔV(y)χ|y|≤R(y) dy

+V(x),
is radially symmetric and harmonic in BR

−ΔΦR(x) = ΔV(x)χ|x|≤R(x)−ΔV(x) = 0, ∀ |x| ≤ R.
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Therefore, ΦR(x) is constant in |x| ≤ R and uR = −∇ΦR vanishes there,∫
∇N (x− y)ΔVχBR(y) dy +∇V(x) = 0, ∀x ∈ BR, (2.12)

which means that ρR = ΔVχBR , satisfying (1.6), is a steady state. Observe that

this family of steady-states can be equally parametrized by their total mass: for

any m0 > 0, there exists a uniquely determined R0 = R0(m0) > 0 such thatb (Sd−1

denoting the d-dimensional unit sphere)

1

|Sd−1|
∫

ΔV χ
BR0

dy =

∫ R0

0

∂

∂r
(rd−1V ′(r)) dr = Rd−1

0 V ′(R0) = m0.

In the second step, we consider a compactly supported steady state ρ∞: we will

show that it must coincide with ρ
R
for properly chosen R. To this end recall that

according to (1.7) (with W = 0), a steady state of (2.1) satisfies

ρ∞(x) = ΔV(x)χsupp ρ∞(x) (2.13)

and by (1.6) with W = 0, it is characterized by

−
∫

∇N (x − y)ΔV(y)χsupp ρ∞(y) dy −∇V(x) = 0, ∀x ∈ supp ρ∞. (2.14)

Let R∞ denote its finite diameter R∞ = maxx∈suppρ∞ |x|. We turn to compare ρ∞
with the steady solution ρ

R∞ = ΔVχBR∞ . By our first step, the latter is a steady

state, hence it also satisfies (1.6) (with W = 0), namely

−
∫

∇N (x − y)ΔV(y)χBR∞ (y) dy −∇V(x) = 0, ∀x ∈ BR∞ . (2.15)

By definition, BR∞ ⊃ supp ρ∞ and there exists x ∈ supp ρ∞ such that |x| = R∞.

Taking the difference between (2.14) and (2.15) and multiply by that x gives

−
∫

x · ∇N (x − y)ΔV(y)χBR∞\supp ρ∞(y) dy = 0. (2.16)

Now, with ∇N (x) = −cd|x|−dx we compute that for any |y| < R∞, consult Fig. 1

below,

x · ∇N (x − y) = − cd
|x− y|dx · (x− y) = − cd

|x− y|d (R
2
∞ − x · y)

< 0, |y| < R∞. (2.17)

Thus, the first integrand in (2.16) does not vanish; by assumption, the second

integrand is strictly positive, and consequently the third integrand must vanish,

supp ρ∞ = {y : |y| ≤ R∞}. (2.18)

Therefore, the steady state ρ∞ is uniquely determined as the radially symmetric

ρ∞ = ΔV(x)χ|x|≤R∞(x).

bWe make a minimal growth assumption rd−1V ′(r) r→∞−→ ∞.
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Convergence rate toward equilibrium. A similar comparison argument has

been used in Ref. 4 in the case of quadratic potential V(x) = |x|2. Here we extend

this argument to general radially-symmetric potentials. Moreover, we pursue a con-

siderably more intricate comparison argument to study the rate of equilibration of

(2.1). This is the content of our next result.

Theorem 2.3. Consider the aggregation equation (2.1) with a C3 radially-

symmetric confining potential V(x) = V (r), satisfying

0 < a ≤ ΔV(x) ≤ A < ∞, ∀x (2.19)

and subject to compactly supported initial data ρ0 with uniform lower-boundc

ρ0(x) ≥ ρmin > 0, ∀x ∈ supp ρ0.

Then its energy E(t) = E[ρ(t, ·)] decays toward the limiting energy E∞,

E(t)− E∞ ≤ Cγ(1 + t)−γ , γ <
d+ 2

(d− 2)(d+ 1)
, t ≥ 0, E∞ = E[ρ∞]. (2.20)

Furthermore, ρ(t, ·) converges to ρ∞ with L1-convergence rate

‖ρ(t, ·)− ρ∞‖L1 ≤ Cγ(1 + t)−γ/2. (2.21)

The proof, provided in Sec. 3, proceeds by comparing between the family of

steady solutions, ρ
R(t)

with R(t) := maxx∈suppρ(t,·) |x| associated with the given

solution ρ(t, ·), and the steady state ρ∞. Compared with the argument outlined in

Theorem 2.2, here we lack the steady state characterization (2.13): in fact, even if

(2.13) is assumed to hold for the initial data, ρ0 = ΔVχsupp ρ0 , it does not necessarily

propagate in time. We resolve this difficulty by introducing the functional

F (t) :=
1

2

∫
(ρ(t,x) −ΔV(x))2ρ(t,x) dx, (2.22)

which measures the discrepancy of ρ(t,x) from satisfying (2.13). Then, we design a

Lyapunov-type modified energy functional, Ẽ by combining E(t) − E∞, F (t) and

the discrepancy of radius R(t)− R∞ where

R(t) = max
x∈supp ρ(t,·)

|x|, R∞ = max
x∈supp ρ∞

|x|. (2.23)

Verifying the algebraic decay rate of Ẽ implies the result (2.20), as well as quantifies

the algebraic rate of R(t)−R∞,

(R(t)−R∞)+ � Cγ(1 + t)−
d+2

d(d−2)(d+1) .

The proof of Theorem 2.3 tells us that the aggregation solution ρ(t, ·) approaches
the unique steady state ρ∞ in the sense of 2-Wasserstein distance with algebraic

cNote that ρ0 is therefore discontinuous on ∂supp ρ0 while assumed bounded away from vacuum
on supp ρ0.
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convergence rate. Note that in the case d = 2 this algebraic rate γ can be arbitrarily

large, while for higher spatial dimensions, γ is restricted by a d-dependent constant.

Remark 2.2. The same methodology may also apply to V(x) which is not radially-

symmetric, as long as the first step in our proof of Theorem 2.2 goes through.

To be precise, assume the existence of a parameterized family of steady states,

{ρ∞(x; p)}, such that (i) supp ρ∞(·; p) is convex, and (ii) the following monotonicity

condition holds, supp ρ∞(·; p1) ⊂ supp ρ∞(·; p2) whenever p1 < p2 (and as before,

there is one-to-one correspondence with the initial mass p = p(m0)). Then one can

obtain the uniqueness of steady states for fixed p0, and derive the equilibration rate

via a similar approach. It remains open to explore more general class of external

potentials which give rise to the existence of such a family of steady states.

2.2. Newtonian repulsion with attraction

We apply the ideas in the previous subsection to study the aggregation equation

(1.1), (1.3) with pairwise interaction potential Φ given by sum of Newtonian repul-

sion and smooth attraction potential W ,

∂tρ+∇ · (ρu) = 0, u(t,x) = −∇Φ, Φ = N ∗ ρ+W ∗ ρ. (2.24)

Observe that being a solution of the dynamics with pairwise attraction equation

(2.24), ρ can be also viewed as a solution of the external potential equation (2.1)

with a ρ-dependent potential Vρ = W ∗ ρ(t, ·). The distinction is that Vρ is time-

dependent, except in the case of quadratic pairwise attraction,W2 := 1
2 |x|2. Indeed,

since (2.24) preserves the center of mass c0 :=
∫
xρ0(x) dx =

∫
xρ(t,x) dx, one

may assume c0 = 0 without loss of generality, hence

∇(W2 ∗ ρ)(t,x) =
∫
(x− y)ρ(t,y) dy = m0x = −∇V2(x), V2 :=

1

2
m0|x|2.

Thus, the forcing induced by pairwise quadratic attraction is equivalent to aggre-

gation with quadratic confinement, −∇Φ = −∇N ∗ρ−∇W2 ∗ρ = −∇N ∗ρ−∇V2.

The following theorem states the uniqueness of steady states of pairwise attraction

(2.24) for potentials, W , close to quadratic.

Theorem 2.4. Consider the aggregation equation (2.24) with an attraction

potential

W(x) =
|x|2
2d

+ w(x), |Δw(x)| ≤ ε, (2.25)

where w(x) = w(|x|) is a radially-symmetric perturbation of “order” ε > 0, depend-

ing on d. Then for each m0 > 0, (2.24) admits a unique steady state (up to

translation) with total mass m0, and it is radially-symmetric.

The case w ≡ 0 corresponds to Theorem 2.2 with Φ = N ∗ ρ+ V2, Theorem 2.4

can be viewed as a perturbation of Theorem 2.2, Φ = N ∗ ρ+ V , with a perturbed
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potential V = V2+w∗ρ, satisfying ΔV = d+Δw∗ρ > 1−εm0 > 0. Alternatively, this

can be viewed as aggregation driven by quadratic external forcing, Φ = Nε ∗ρ+V2,

with perturbed Newtonian repulsion Nε := N + w.

We expect that an explicit algebraic equilibration rate can be obtained by the

same method as the previous subsection, and this is left as future work.

3. Equilibration of Newtonian Repulsion with Confining Potential

In this section, we prove Theorem 2.3. We first prepare a quantitative version of

(2.17).

Lemma 3.1. For any x with |x| = R > 0, there holds

x · ∇N (x − y) ≤ − c

Rd−2
, ∀y �= x, |y| ≤ R, d ≥ 2. (3.1)

Indeed, since (x− y) · x ≡ 1
2 (|x− y|2 + |x|2 − |y|2) ≥ 1

2 |x− y|2, (3.1) follows in
view of

x · ∇N (x − y) = − (d− 2)cd
|x− y|d x · (x− y) ≤ − (d− 2)cd

2|x− y|d−2

≤ − c

Rd−2
, c = (d− 2)cd2

1−d,

with the proper adjustment of c > 0 in the 2D case. In what follows, we use Lp,q

denote the usual notation of Lorentz space, e.g. Ref. 3.

We will also need the following interpolation bound.

Lemma 3.2. For compactly supported g ∈ L∞
c (Rd) there holds,

‖g‖Ld,1 �

⎧⎨⎩Cd‖g‖
2
d

L2 × ‖g‖1− 2
d

L∞ , d > 2,

Cp‖g‖
p
2

L2 × ‖g‖1−
p
2

L∞ , d = 2, ∀ p < 2.
(3.2)

Indeed, if λg(s) = |{x : |g(x)| > s}| is the distribution function associated with

g, then for any 1 < p < r < ∞,

‖g‖Lr,1 = r

∫ ‖g‖L∞

0

λ1/r
g (s) ds

�
(∫ ∞

0

spλg(s)
ds

s

)1/r

×
(∫ ‖g‖L∞

0

s−
(

p−1
r

)
r′ ds

)1/r′

= Cp,r‖g‖
p
r

Lp × ‖g‖1−
p
r

L∞

and (3.2) follows with (r, p) = (d, 2). When d = 2 we use it with r = 2 and any

p < 2, so that for compactly supported g’s,

‖g‖L2,1 � Cp‖g‖
p
2

Lp × ‖g‖1−
p
2

L∞ � Cp‖g‖
p
2

L2 × ‖g‖1−
p
2

L∞ , ∀ p < 2.
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Proof of Theorem 2.3. The assumptions of Theorem 2.2 are satisfied, and hence

a unique radial steady state ρ∞ with prescribed mass m0 exists, satisfying ρ∞ =

ΔVχ|x|≤R∞ .

STEP 1 — Upper and lower bounds of ρ. Tracing (2.1) along characteristics,

ρ′ := ∂tρ+ u · ∇ρ = −ρ∇ · u = ρ(ΔV − ρ), 0 < a ≤ ΔV ≤ A,

implies that after a certain time t0 (which may depend on a,A,minx∈supp ρ0 ρ0(x)

but otherwise is independentd of max ρ0), there holds

a

2
≤ ρ(t,x) ≤ 2A, ∀ t ≥ t0, ∀x ∈ supp ρ(t, ·).

Therefore, by shifting the initial time if necessary, we may assume, without loss of

generality, that we have the uniform bounds

0 < ρmin ≤ ρ(t,x) ≤ ρmax, ∀ t ≥ 0, ∀x ∈ supp ρ(t, ·). (3.3)

STEP 2 — Estimate the discrepancy functional F (t) in (2.22). A straightforward

computation yields

d

dt
F (t) =

∫
(ρ−ΔV)∂tρ · ρ dx+

1

2

∫
(ρ−ΔV)2∂tρ dx

= −
∫
(ρ−ΔV)∇ · (ρu)ρ dx+

∫
(ρ−ΔV)∇(ρ−ΔV) · uρ dx

=

∫
(−∇ρ · u− ρ∇ · u+∇ρ · u−∇ΔV · u)(ρ−ΔV)ρ dx

=

∫
(−ρ(ρ−ΔV)−∇ΔV · u)(ρ−ΔV)ρ dx

≤ −ρminF (t)−
∫

∇ΔV · u(ρ−ΔV)ρ dx.

The second term on the right can be bounded in terms of the energy dissipation

rate D in (1.8),∣∣∣∣∫ (−∇ΔV · u)(ρ−ΔV)ρ dx
∣∣∣∣ ≤ ‖V‖C3

∫
|u| · |ρ−ΔV|ρ dx

≤ ‖V‖C3

(
ρmin

2‖V‖C3

F +
2‖V‖C3

ρmin
D
)

and we end up with d
dtF (t) ≤ − ρmin

2 F + CD. This implies that F is bounded: in

fact, since D = − d
dtE it follows that F + C(E − E∞) ≤ F0 + C(E0 − E∞). Hence

we seek the large time behavior for quantities F, (E−E∞) (and likewise R−R∞ in

dFor example, take t0 � max{| log min ρ0
2a

|, 1
A
}.
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the next step) which depending on their vanishing order � 1. Observe with small

enough ε1 > 0 there follows

d

dt
((E(t) − E∞) + ε1F (t)) ≤ −D + ε1

(
−ρmin

2
F + CD

)
≤ −c(D + F ). (3.4)

To close this inequality, we will need to take into account the further discrepancy

between supp ρ(t, ·) and supp ρ∞.

STEP 3 — Estimate of R′(t). Recall that R(t) is the radius of supp ρ(t, ·), (2.23)
and assume for a moment that R(t) ≥ R∞, see Fig. 1 for a typical configuration.e

Fix x on the edge of supp ρ(t), |x| = R. Then by (2.12) the velocity u in (1.3)

amounts to

u(t,x) = −
∫
|y|≤R

∇N (x − y)ρ(t,y) dy −∇V(x)

= −
∫
|y|≤R

∇N (x − y)(ρ(t,y) −ΔV(y)) dy

−
(∫

|y|≤R

∇N (x− y)ΔV(y) dy +∇V(x)
)

= −
∫
|y|≤R

∇N (x − y)(ρ(t,y) −ΔV(y)) dy.

We estimate the last term by examining separately,f u± := −∇N ∗((ρ−ΔV)±χBR

)
.

We begin by estimating the discrepancy from below, (ρ−ΔV)−χBR . By Lemma 3.1,

R∞

R

supp ρ(t, ·)

Fig. 1. The support of ρ(t, ·) inscribed in BR vs. the limiting ball BR∞ .

eNote that supp ρ0 and hence supp ρ need not be simply connected.
fHere and below we let z−, z+ denote the negative and receptively positive parts of a real z.
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x · u−(t,x) = −
∫
|y|≤R

x · ∇N (x− y)(ρ(t,y) −ΔV(y))− dy

≤ c

Rd−2

∫
|y|≤R

(ρ(t,y) −ΔV(y)) dy

=
c

Rd−2

(∫
|y|≤R∞

ΔV dy −
∫
|y|≤R

ΔV dy

)

= − c

Rd−2

∫
R∞≤|y|≤R

ΔV dy

≤ − c

Rd−2

a

d
(Rd −Rd

∞)

� −R(R−R∞), (3.5)

where the second equality uses the fact that
∫
|y|≤R

ρ(y) dy = m0 =
∫
|y|≤R∞

ΔV dy

and the second inequality uses the lower bound ΔV ≥ a.

Next, we estimate the discrepancy from above, g = (ρ − ΔV)+. Since ∇N ∈
Ld′,∞ then ‖∇N ∗ g‖L∞ � ‖g‖Ld,1. Recall that g is uniformly bounded, supported

in BR and satisfies the L2 bound ‖g‖2L2 ≤ 1/ρminF (t), so Lemma 3.2 implies the

existence of finite Cd, Cp such that

x

R
· u+(t,x) = −

∫
x

R
· ∇N (x− y)(ρ(t,y) −ΔV(y))+ dy

≤ ‖ρ(t, ·)−ΔV‖Ld,1 ≤
{
Cd(F (t))1/d, d > 2

Cp(F (t))p/4, ∀ p < d = 2.
(3.6)

Using the bounds (3.5), (3.6) we find

d

dt
(R(t)−R∞)+ = sup

|x|=R,x∈supp ρ

u(t,x) · x
R

≤ −c(R(t)−R∞)+ + C(F (t))1/s,

with

s :=

⎧⎨⎩
d, d > 2

4

p
, ∀ p < d = 2.

⎫⎬⎭ > 2.

We note on passing that since F is bounded (due to (3.4)), hence (R(t) − R∞)+
remains bounded. We proceed to show its time decay.

Fix an arbitrary m > d. By Young’s inequality we have

d

dt
(R(t)−R∞)m+ ≤ −cm(R(t)−R∞)m+

+
(δm)s

′

s′
(R(t)−R∞)

(m−1)s′
+ +

1

s

(
C

δ

)s

F (t). (3.7)

Note that since m > d then (m − 1)s′ > m: indeed, when d > 2 then s = d and

d′ > m′ = m/(m − 1), and when d = 2 then we can always choose p so that
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4/m < p < 2 and with s = 4/p we then have (m−1)(4/p)′ > m. Therefore, choosing

small enough δ > 0, makes the first term on the right of (3.7) dominates the second

for bounded R(t)’s, and we conclude the existence of large enough Cδ > 0 depending

on (m, s,R∞), such that

d

dt
(R(t)−R∞)m+ ≤ −cm(R(t)−R∞)m+ + CδF (t),

cm :=
1

2
cm ∀m > d, d ≥ 2. (3.8)

STEP 4 — We form the Lyapunov functional, Ẽ(t), as a suitable linear combina-

tion of

Ẽ(t) := (E(t)− E∞) + ε1F (t) + ε2(R(t)−R∞)m+ ,

with fixed ε1 � ε2 > 0 which are yet to be chosen. Choosing the corresponding

combination of (1.8), (3.4) and (3.8) with small enough ε2 then yields,

d

dt
Ẽ ≤ −c(D + F )− cmε2(R −R∞)m+ + Cε2F ≤ −1

2
cF − cε2(R−R∞)m+ .

(3.9)

with (re-labeled) constants 0 < c � 1 � C which are independent of ε2.

STEP 5 — Close the estimate. We aim to show that

E[ρ(t)]− E∞ ≤ Cq((R(t)−R∞)
2/q
+ + F (t)),

⎧⎪⎨⎪⎩
q =

2d

d+ 2
, d > 2,

any q > 1, d = 2.

(3.10)

Combined with (3.9), we obtain, noticing that α := m
2/q > 1 and adjusting ε2 � 1

if necessary,

d

dt
Ẽ ≤ −cẼα, α =

mq

2
>

⎧⎪⎨⎪⎩
d

d

d+ 2
, d > 2,

1, d = 2,

which recovers (2.20), E(t) − E∞ ≤ Ẽ � (1 + t)−γ with γ = 1/(α− 1).

It remains to prove (3.10). Let ρ1 denote the discrepancy of ρ from the steady

state ρ∞ = ΔVχBR∞ ,

ρ1 := ρ−ΔVχBR∞ ,

∫
ρ1 dx = 0. (3.11)
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Observe that ρ1 is uniformly bounded since ΔV and ρ are, and that is supported

in BR; more precisely ρ1 = ρχBR\BR∞ − (ΔV − ρ)χBR∞ hence

‖ρ1(t, ·)χsupp ρ‖L1 =

∫
BR\BR∞

ρ dx+

∫
BR∞∩supp ρ

|ΔV − ρ| dx

� Cρmax(R −R∞) +

(
Rd∞
ρmin

)1/2(∫
|ΔV − ρ|2ρ(t,x) dx

)1/2

� (R(t)− R∞)+ + F 1/2(t). (3.12)

This implies that

‖ρ1(t, ·)‖L1 � (R(t)−R∞)+ + F 1/2(t), (3.13)

by the mean-zero property of ρ1, since ρ1 is nonpositive on (supp ρ)c.

Expressed in terms of ρ1, the discrepancy of the energy is given by

E[ρ]− E∞ =

∫
Φ∞(x)ρ1(x) dx +

1

2

∫∫
N (x− y)ρ1(x)ρ1(y) dxdy. (3.14)

Let us first bound the first linear term on the right of (3.14). Here Φ∞(x) :=∫ N (x−y)ΔV(y)χBR∞ (y) dy+V(x) is the total potential generated by the steady

state and as before, being radial and harmonic it remains constant in BR∞ . Let

Φ∞(R∞ x
|x|) be the radial extension of this constant throughout BR: since ρ1 has

zero mean on BR then
∫
BR

Φ∞
(
R∞ x

|x|
)
ρ1(x) dx = 0, and since Φ∞(x) is Lipschitz

outside BR∞ (because we assume that ΔV is), then (3.13) implies∣∣∣∣∫ Φ∞(x)ρ1(x) dx

∣∣∣∣ = ∣∣∣∣∫
BR

(
Φ∞(x) − Φ∞

(
R∞

x

|x|
))

ρ1(x) dx

∣∣∣∣
=

∣∣∣∣∣
∫
BR\BR∞

(
Φ∞(x) − Φ∞

(
R∞

x

|x|
))

ρ1(x) dx

∣∣∣∣∣
� (R −R∞)+‖ρ1‖L1

� (R −R∞)2+ + F (t). (3.15)

To estimate the quadratic term in (3.14), we separate between the cases d > 2 and

d = 2. For the former, set q =
2d

d+ 2
∈ (1, 2) and use Hardy–Littlewood–Sobolev

with N ∈ L
d

d−2 ,∞ to conclude∣∣∣∣∫ N (x − y)ρ1(x)ρ1(y) dxdy

∣∣∣∣
� ‖ρ1‖2Lq �

(∫
BR\BR∞

ρq dx

) 2
q

+

(∫
BR∞

|ΔV − ρ|q dx
) 2

q
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≤ Cρ2max(R −R∞)
2
q

+ +

(
Rd

∞
ρmin

) 2/q

(2/q)′ ∫
BR∞

|ΔV − ρ|2ρ dx

� (R −R∞)
2
q

+ + F, q =
2d

d+ 2
∈ (1, 2).

(3.16)

For the remaining case d = 2 we recall that ρ1 has zero mean, hence the 2D

embedding ‖ρ1‖Ḣ−1 ≤ Cq‖ρ1‖Lq
loc

recovers (3.16) for any q > 1∣∣∣∣∫ N (x− y)ρ1(x)ρ1(y) dxdy

∣∣∣∣ = ‖ρ1‖2Ḣ−1 � Cq‖ρ1‖2Lq
loc

� (R−R∞)
2
q

+ + F,

∀ q > 1.

Now (3.10) follows from (3.14)–(3.16).

Finally, to show the convergence of ρ(t, ·) to ρ∞, we notice that the energy

estimate Ẽ � (1 + t)−γ implies

(R(t)−R∞)+ � (1 + t)−γq/2, F (t) � (1 + t)−γ , (3.17)

where q is as defined in (3.10). Therefore (3.13) implies

‖ρ1(t, ·)‖L1 = ‖ρ(t, ·)− ρ∞‖L1 � (1 + t)−γq/2 + (1 + t)−γ/2 � (1 + t)−γ/2. (3.18)

4. Uniqueness of Steady State for Newtonian Repulsion with

Near-Quadratic Attraction

First notice that (2.25) implies that for any r > 0,∣∣∣∣∣w′(r)
∫
|x|=r

dS

∣∣∣∣∣ =
∣∣∣∣∣
∫
|x|=r

x

|x| · ∇w(x) dS

∣∣∣∣∣ =
∣∣∣∣∣
∫
|x|≤r

Δw(x) dx

∣∣∣∣∣ ≤ ε|Br|, (4.1)

Therefore

|w′(r)| ≤ ε · r
d
. (4.2)

Proof of Theorem 2.4. Let ρ∞ be the global energy minimizer of E[ρ] among

all radially-symmetric density distributions with total mass m0. Since the gradient

flow (2.24) preserves the radial symmetry, ρ∞ is clearly a steady state of (2.24).

Assume ρ(x) is a steady state of (2.24) with total mass m0 (and assume its

center of mass
∫
xρ(x) dx = 0 without loss of generality), and we aim to show

ρ = ρ∞.

Denote R = maxx∈supp ρ |x| and let

Ṽ(x) =
∫

W(x− y)ρ(y) dy, Ṽ∞(x) =

∫
W(x− y)ρ∞(y) dy, (4.3)
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be the attractive potential fields generated by ρ and ρ∞. Here Ṽ∞ is radially-

symmetric because ρ∞ is. Then ρ(x) is a steady state of (2.1) with V replaced by

Ṽ , which implies

ρ = ΔṼχsupp ρ, −
∫

∇N (x − y)ΔṼ(y)χsupp ρ(y) dy −∇Ṽ(x)

= 0, ∀x ∈ supp ρ. (4.4)

Similarly

ρ∞ = ΔṼ∞χsupp ρ∞ :

−
∫

∇N (x − y)ΔṼ∞(y)χsupp ρ∞(y) dy −∇Ṽ∞(x) = 0, ∀x ∈ supp ρ∞.

(4.5)

The assumptions on W imply that

1− ε ≤ ΔW(x) ≤ 1 + ε, ∀x (4.6)

and therefore

m0(1 − ε) ≤ ΔṼ(x) ≤ m0(1 + ε), m0(1 − ε) ≤ ΔṼ∞(x) ≤ m0(1 + ε). (4.7)

Next we compute

Ṽ(x) − Ṽ∞(x) =

∫
w(x − y)ρ(y) dy −

∫
w(x − y)ρ∞(y) dy

=

∫
w(x − y)ΔṼ(y)χsupp ρ(y) dy

−
∫

w(x − y)ΔṼ∞(y)χsupp ρ∞(y) dy

=

∫
w(x − y)(ΔṼ(y) −ΔṼ∞(y))χsupp ρ∩supp ρ∞(y) dy

+

∫
w(x− y)ΔṼ(y)χsupp ρ\supp ρ∞(y) dy

−
∫

w(x− y)ΔṼ∞(y)χsupp ρ∞\supp ρ(y) dy

=: I1 + I2 + I3. (4.8)

STEP 1 — estimate ‖ΔV −ΔV∞‖L∞ .

We take the Laplacian of (4.8):

ΔṼ(x)−ΔṼ∞(x) = ΔI1 +ΔI2 +ΔI3 (4.9)
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and estimate the three terms on the right-hand side.

|ΔI1| =
∣∣∣∣∫ Δw(x − y)(ΔṼ(y) −ΔṼ∞(y))χsupp ρ∩supp ρ∞(y) dy

∣∣∣∣
≤ ε · |supp ρ∞| · ‖ΔV −ΔV∞‖L∞ , (4.10)

by (2.25).

|ΔI2| =
∣∣∣∣∫ Δw(x− y)ΔṼ(y)χsupp ρ\supp ρ∞(y) dy

∣∣∣∣
≤ ε ·m0(1 + ε) · |supp ρ\supp ρ∞|, (4.11)

by (2.25) and (4.7).

To estimate I3, we first use the fact that ρ and ρ∞ have the same total mass,

and obtain

0 =

∫
ρ(x) dx−

∫
ρ∞(x) dx

=

∫
ΔṼ(x)χsupp ρ(x) dx −

∫
ΔṼ∞(x)χsupp ρ∞(x) dx

=

∫
(ΔṼ(x)−ΔṼ∞(x))χsupp ρ∩supp ρ∞(x) dx

+

∫
ΔṼ(x)χsupp ρ\supp ρ∞(x) dx

−
∫

ΔṼ∞(x)χsupp ρ∞\supp ρ(x) dx. (4.12)

Therefore∣∣∣∣∫ ΔṼ∞(x)χsupp ρ∞\supp ρ(x) dx

∣∣∣∣
=

∣∣∣∣∫ (ΔṼ(x)−ΔṼ∞(x))χsupp ρ∩supp ρ∞(x) dx

+

∫
ΔṼ(x)χsupp ρ\supp ρ∞(x) dx

∣∣∣∣
≤ |supp ρ∞| · ‖ΔṼ −ΔṼ∞‖L∞ +m0(1 + ε) · |supp ρ\supp ρ∞|. (4.13)

This implies

|ΔI3| =
∣∣∣∣∫ Δw(x − y)ΔṼ∞(y)χsupp ρ∞\supp ρ(y) dy

∣∣∣∣
≤ ε · |supp ρ∞| · ‖ΔṼ −ΔṼ∞‖L∞ + ε ·m0(1 + ε) · |supp ρ\supp ρ∞|.

(4.14)
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Finally, use these in (4.9) we conclude that

‖ΔṼ −ΔṼ∞‖L∞ ≤ 2ε · |supp ρ∞| · ‖ΔṼ −ΔṼ∞‖L∞

+2ε ·m0(1 + ε) · |supp ρ\supp ρ∞|. (4.15)

If ε is small enough so that |supp ρ∞| · 2ε < 1, then

‖ΔṼ −ΔṼ∞‖L∞ ≤ 2ε ·m0(1 + ε)

1− |supp ρ∞| · 2ε · |supp ρ\supp ρ∞|. (4.16)

As a byproduct, this shows that unless ΔṼ − ΔṼ∞ = 0 which implies the

conclusion, we always have supp ρ �⊂ supp ρ∞ = {x : |x| ≤ R∞} and therefore

R > R∞. Now we will show that the option R > R∞ is impossible.

STEP 2 — use comparison principle. Assume on the contrary that R > R∞.

Taking ∇ on (4.8) and conducting similar estimates gives

|∇Ṽ(x)−∇Ṽ∞(x)| ≤ ε · 2R
d

· 2(|supp ρ∞| · ‖ΔṼ −ΔṼ∞‖L∞

+m0(1 + ε) · |supp ρ\supp ρ∞|), ∀ |x| ≤ R, (4.17)

using |∇w(x − y)| ≤ ε |x−y|
d ≤ ε · 2R

d by (4.2).

The fact that ΔṼ∞χ|x|≤R is a steady state of (2.1) with Ṽ∞ implies

−
∫

∇N (x − y)ΔṼ∞(y)χ|y|≤R(y) dy −∇Ṽ∞(x) = 0, ∀ |x| ≤ R. (4.18)

Taking difference with (4.4) and evaluating at x ∈ supp ρ with |x| = R (such an x

exists due to the definition of R) gives

−
∫
|y|≤R

∇N (x − y)(ΔṼ∞(y)− ρ(y))+ dy

−
∫
|y|≤R

∇N (x − y)(ΔṼ∞(y) − ρ(y))− dy

− (∇Ṽ∞(x) −∇Ṽ(x)) = 0. (4.19)

Since supp ρ ⊂ BR and ρ = ΔṼχsupp ρ,

|(ΔṼ∞(y) − ρ(y))−| ≤ ‖ΔṼ∞ −ΔṼ‖L∞, ∀ |y| ≤ R. (4.20)

Also notice that since R ≥ R∞, we have
∫
|y|≤R ρ(y) dy = m0 =

∫
|y|≤R∞

ΔṼ∞
(y) dy, which implies∫

|y|≤R

ΔṼ∞(y) dy −
∫
|y|≤R

ρ(y) dy

=

∫
|y|≤R

ΔṼ∞(y) dy −
∫
|y|≤R∞

ΔṼ∞(y) dy ≥ m0(1 − ε)|{R∞ ≤ |y| ≤ R}|.
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Therefore ∫
|y|≤R

(ΔṼ∞(y) − ρ(y))+ dy ≥ m0(1− ε)|{R∞ ≤ |y| ≤ R}|. (4.21)

Take inner product of (4.19) with x. Lemma 3.1 with (4.21) shows that

−x ·
∫
|y|≤R

∇N (x − y)(ΔṼ∞(y) − ρ(y))+ dy

≥ cd
Rd−2

·m0(1− ε)|{R∞ ≤ |y| ≤ R}|. (4.22)

Then we estimate the other two terms in (4.19), after taking inner product with x:∣∣∣∣∣x ·
∫
|y|≤R

∇N (x− y)(ΔṼ∞(y) − ρ(y))− dy − x · (∇Ṽ∞(x) −∇Ṽ(x))
∣∣∣∣∣

≤ ‖ΔṼ −ΔṼ∞‖L∞ ·
∫
(−x) · ∇N (x − y)χ|y|≤R(y) dy

+R|∇Ṽ(x) −∇Ṽ∞(x)|

≤ ‖ΔṼ −ΔṼ∞‖L∞ · R
2

d
+R · ε · 2R

d
· 2(|supp ρ∞| · ‖ΔṼ −ΔṼ∞‖L∞

+m0(1 + ε) · |supp ρ\supp ρ∞|)

≤ 2ε ·m0(1 + ε)
R2

d
·
(
1 + 4ε · |supp ρ∞|
1− |supp ρ∞| · 2ε + 2d

)
· |supp ρ\supp ρ∞|

≤ 2ε ·m0(1 + ε)
R2

d
·
(
1 + 4ε · |supp ρ∞|
1− |supp ρ∞| · 2ε + 2d

)
× min{|{R∞ ≤ |y| ≤ R}|, |supp ρ|}, (4.23)

where the first inequality uses the fact that (−x) · ∇N (x − y) ≥ 0 by Lemma 3.1,

the second inequality uses (4.17) and the fact that χ|y|≤R is a steady state of (2.1)

with V(x) = |x|2/(2d), and the third inequality uses (4.16).

If R ≤ 2R∞, then (4.22) and (4.23) contradict (4.19). In fact, if R > R∞, and

ε is small enough such that

2ε · 1 + ε

1− ε
· 1
d

(
1 + 4ε · |supp ρ∞|
1− |supp ρ∞| · 2ε + 2

)
<

cd
(2R∞)d

, (4.24)

then the right-hand side of (4.22) is greater than that of (4.23), which gives the

contradiction.

If R > 2R∞, then by the estimates

|supp ρ| ≤ 1

1− ε
, |{R∞ ≤ |y| ≤ R}| ≥ 2d − 1

2d
|B1| · Rd, ∀R > 2R∞. (4.25)
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(4.22) and (4.23) contradict (4.19), if ε is small enough such that

2ε · 1 + ε

(1− ε)2
· 1
d

(
1 + 4ε · |supp ρ∞|
1− |supp ρ∞| · 2ε + 2

)
< cd

2d − 1

2d
. (4.26)

Notice the estimate

|supp ρ∞| ≤ 1

1− ε
, R∞ ≤ cd

(1 − ε)1/d
, (4.27)

which implies the smallness conditions (4.24) and (4.26) on ε only depend on d.

Remark 4.1. Compared to the proof of Theorem 2.2, the main new ingredient in

the above proof is a contraction argument, which can be seen in the derivation from

(4.15) to (4.16).

Appendix A

A.1. 1D steady state are not unique

In the appendix, we give a description of the steady states (2.1) when d = 1. In

this case, one can write (2.1) as

∂tρ+ ∂x(ρu) = 0, u(t, x) = −
∫

N ′(x− y)ρ(t, y) dy − V ′(x). (A.1)

Define m(t, x) as the primitive of ρ(t, x):

m(t, x) :=

∫ x

−∞
ρ(t, y) dy − m0

2
.

We have (omitting t-dependence)∫ x

−∞
∂y(ρu) dy = ρ(x)u(x) = ρ(x)

(
−
∫

N ′(x− y)ρ(y) dy − V ′(x)
)
,

and

−
∫

N ′(x− y)ρ(y) dy = −
∫ ∞

−∞
N ′(x− y)∂ym(y) dy

= − lim
y→∞N ′(x− y)m(y) + lim

y→−∞N ′(x− y)m(y)

−
∫ ∞

−∞
N ′′(x − y)m(y) dy

= −1

2
· m0

2
+ (−1

2
) ·
(
−m0

2

)
+m(x) = m(x). (A.2)

Therefore, by integrating (A.1) in x, we see that m(t, x) satisfies

∂tm+ (m(x) − V ′(x))∂xm = 0.
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For fixed t, since m(t, x) is an increasing function in x, one can define X(t,m)

as its inverse function, except a countable set of values of m. Then X(t,m), for

almost all m ∈ (−m0/2,m0/2), satisfies an ODE

d

dt
X(t,m) = m− V ′(X). (A.3)

Therefore, as long as V is super-linear:

lim
x→∞V ′(x) = ∞, lim

x→−∞V ′(x) = −∞.

(A.3) drives X(t,m) to the equilibrium point x with V ′(x) = m, which lies in the

same basin of attraction as the initial data Xin(m). If V is strictly convex, then

there is a unique x with V ′(x) = m; otherwise there may be more than one x.

Therefore we conclude:

Proposition A.1. If V is super-linear, then the solution to (A.1) with compactly

supported initial data converges to a steady state as t → ∞, in the sense that

limt→∞ X(t,m) = X∞(m) for almost all m ∈ (−m0/2,m0/2)x, for some X∞(m)

with V ′(X∞(m)) = m.

If in addition, V is strictly convex, then the steady state is unique for each fixed

m0; if V ′′(x) ≥ a > 0, ∀x, then the convergence rate of the limit limt→∞ X(t,m) =

X∞(m) is exponential, being uniform in m.

If V is not convex, then the steady state may fail to be unique.

A.2. Steady states must have compact support

Proposition A.2. Let d ≥ 2, and V be a radial potential satisfying ΔV(x) ≥
0, ∀x ∈ R

d, ‖ΔV‖L∞ < ∞ and the condition:

V ′(r) ≥ cVr−
d−1
d+1 , ∀ r ≥ R0, (A.4)

for some R0 > 0, where cV > 0. Then any steady state of has compact support.

Proof. Let ρ = ΔVχsupp ρ be a steady state, and take R > 0. We aim to prove

that when R is large enough, then supp ρ∩ {|x| = R} = ∅. In the rest of the proof,

we denote

εR =

∫
|x|>R

ρ(x) dx, satisfying lim
R→∞

εR = 0. (A.5)

Suppose the contrary, then we take x ∈ supp ρ∩{|x| = R}, and we may assume

x = (R, 0, . . . , 0)T without loss of generality. The steady state equation (1.6) implies

−
∫

∇N (x− y)ρ(y) dy −∇V(x) = 0.

Taking inner product with x gives

−
∫

x · ∇N (x− y)ρ(y) dy − V ′(R)R = 0. (A.6)
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We aim to show that the left-hand side is negative which leads to a contradiction.

We first write

−
∫

x · ∇N (x− y)ρ(y) dy = c

∫
x · (x− y)

|x− y|d ρ(y) dy

≤ c

∫
y1≤R

x · (x− y)

|x− y|d ρ(y) dy

≤ −
∫
|y|≤R

x · ∇N (x− y)ρ(y) dy

+ c

∫
R−δ≤y1≤R

x · (x− y)

|x− y|d ρ(y) dy

+ c

∫
S

x · (x− y)

|x− y|d ρ(y) dy, (A.7)

where y1 denotes the first component of y, δ > 0 is small, to be determined, and

S := {y : y1 ≤ R}\(BR ∪ {y : R− δ ≤ y1 ≤ R}). (A.8)

Now we estimate the three terms on the right-hand side of (A.7) separately:

The first term (combined with the term V ′(R)R in (A.6)). Similar to STEP 3 of

the proof Theorem 2.3, we use the assumption ΔV ≥ 0 and write

−
∫
|y|≤R

x · ∇N (x− y)ρ(y) dy − V ′(R)R =

∫
BR\supp ρ

x · ∇N (x − y)ΔV(y) dy

≤ − c

Rd−2

∫
BR\supp ρ

ΔV(y) dy.

Notice that by the assumption (A.4),∫
|y|≤R

ΔV(y) dy =

∫
|y|=R

∇V(y) · �n dS(y) = cRd−1V ′(R) ≥ cRd−1−d−1
d+1 ,

for R sufficiently large, and ∫
supp ρ

ΔV(y) dy = m0.

Therefore, since d− 1− d−1
d+1 > 0, we get

−
∫
|y|≤R

x · ∇N (x − y)ρ(y) dy − V ′(R)R ≤ − c

Rd−2
·Rd−1−d−1

d+1 = −cR
2

d+1 .

The second term. One can show that for fixed y1 < R, writing y = (y1,y
′),y′ ∈

R
d−1,

x

|x| ·
∫
Rd−1

(x− y)

|x− y|d dy′ = C,
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is independent of y1. In fact,

x

|x| ·
∫
Rd−1

(x− y)

|x− y|d dy′ =
∫
Rd−1

R− y1
((R − y1)2 + (y′)2)d/2

dy′

=

∫
Rd−1

1

(1 + (y′)2)d/2
dy′ = C.

Therefore, using the assumption ‖ΔV‖L∞ < ∞, we get∫
R−δ≤y1≤R

x · (x− y)

|x− y|d ρ(y) dy ≤ CR

∫
R−δ≤y1≤R

x

|x| ·
∫
Rd−1

(x− y)

|x− y|d dy′ dy1

≤ CδR.

The third term. We claim that

|x− y| ≥
√
δR, ∀y ∈ S. (A.9)

For those y with y1 < 0, this is clear because |x − y| ≥ R in this case. For those

y = (y1,y
′) with y1 ≥ 0, notice that

|x− y|2 = (R− y1)
2 + |y′|2 ≥ |y′|2 = |y|2 − y21 .

By the definition of S, we have |y|2 ≥ R2 and y21 ≤ (R − δ)2. Therefore

|x− y|2 ≥ R2 − (R− δ)2 = 2δR− δ2 ≥ δR,

using the smallness of δ. This proves the claim.

Using (A.9), we get

|x · (x− y)|
|x− y|d ≤ R · 1

|x− y|d−1
≤ R · (δR)−(d−1)/2 = δ−(d−1)/2R−(d−3)/2,

which together with the assumption ‖ΔV‖L∞ < ∞, gives the estimate∫
S

x · (x− y)

|x− y|d ρ(y) dy ≤ CεRδ
−(d−1)/2R−(d−3)/2,

using the fact that S ∩ BR = ∅.
Now we take

δ = ε
2/(d+1)
R R−(d−1)/(d+1),

to equate the second and third terms, and finally obtain the estimate

0 ≤ −
∫
|y|≤R

x · ∇N (x − y)ρ(y) dy − V ′(R)R+ c

∫
R−δ≤y1≤R

x · (x− y)

|x− y|d ρ(y) dy

+ c

∫
S

x · (x− y)

|x− y|d ρ(y) dy ≤ −cR2/(d+1) + Cε
2/(d+1)
R R2/(d+1).

This gives the desired contradiction for large enough R, in view of (A.5).
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